2,320 research outputs found

    Technology research for strapdown inertial experiment and digital flight control and guidance

    Get PDF
    A helicopter flight-test program to evaluate the performance of Honeywell's Tetrad - a strapdown, laser gyro, inertial navitation system is discussed. The results of 34 flights showed a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n.mi., with a standard deviation of 1.48 n.m.; and a modeled mean-position-error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. Tetrad's four-ring laser gyros provided reliable and accurate angular rate sensing during the test program and on sensor failures were detected during the evaluation. Criteria suitable for investigating cockpit systems in rotorcraft were developed. This criteria led to the development of two basic simulators. The first was a standard simulator which could be used to obtain baseline information for studying pilot workload and interactions. The second was an advanced simulator which integrated the RODAAS developed by Honeywell into this simulator. The second area also included surveying the aerospace industry to determine the level of use and impact of microcomputers and related components on avionics systems

    A new method for the spectroscopic identification of stellar non-radial pulsation modes. II. Mode identification of the Delta Scuti star FG Virginis

    Get PDF
    We present a mode identification based on new high-resolution time-series spectra of the non-radially pulsating Delta Scuti star FG~Vir (HD 106384, V = 6.57, A5V). From 2002 February to June a global Delta Scuti Network (DSN) campaign, utilizing high-resolution spectroscopy and simultaneous photometry has been conducted for FG~Vir in order to provide a theoretical pulsation model. In this campaign we have acquired 969 Echelle spectra covering 147 hours at six observatories. The mode identification was carried out by analyzing line profile variations by means of the Fourier parameter fit method, where the observational Fourier parameters across the line are fitted with theoretical values. This method is especially well suited for determining the azimuthal order m of non-radial pulsation modes and thus complementary with the method of Daszynska-Daszkiewicz (2002) which does best at identifying the degree l. 15 frequencies between 9.2 and 33.5 c/d were detected spectroscopically. We determined the azimuthal order m of 12 modes and constrained their harmonic degree l. Only modes of low degree (l <= 4) were detected, most of them having axisymmetric character mainly due to the relatively low projected rotational velocity of FG Vir. The detected non-axisymmetric modes have azimuthal orders between -2 and 1. We derived an inclination of 19 degrees, which implies an equatorial rotational rate of 66 km/s.Comment: 14 pages, 26 figure

    Scaling Behaviour and Complexity of the Portevin-Le Chatelier Effect

    Full text link
    The plastic deformation of dilute alloys is often accompanied by plastic instabilities due to dynamic strain aging and dislocation interaction. The repeated breakaway of dislocations from and their recapture by solute atoms leads to stress serrations and localized strain in the strain controlled tensile tests, known as the Portevin-Le Chatelier (PLC) effect. In this present work, we analyse the stress time series data of the observed PLC effect in the constant strain rate tensile tests on Al-2.5%Mg alloy for a wide range of strain rates at room temperature. The scaling behaviour of the PLC effect was studied using two complementary scaling analysis methods: the finite variance scaling method and the diffusion entropy analysis. From these analyses we could establish that in the entire span of strain rates, PLC effect showed Levy walk property. Moreover, the multiscale entropy analysis is carried out on the stress time series data observed during the PLC effect to quantify the complexity of the distinct spatiotemporal dynamical regimes. It is shown that for the static type C band, the entropy is very low for all the scales compared to the hopping type B and the propagating type A bands. The results are interpreted considering the time and length scales relevant to the effect.Comment: 35 pages, 6 figure

    Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold

    Full text link
    We have investigated the non-classical response of solid 4He confined in porous gold set to torsional oscillation. When solid helium is grown rapidly, nearly 7% of the solid helium appears to be decoupled from the oscillation below about 200 mK. Dissipation appears at temperatures where the decoupling shows maximum variation. In contrast, the decoupling is substantially reduced in slowly grown solid helium. The dynamic response of solid helium was also studied by imposing a sudden increase in the amplitude of oscillation. Extended relaxation in the resonant period shift, suggesting the emergence of the pinning of low energy excitations, was observed below the onset temperature of the non-classical response. The motion of a dislocation or a glassy solid is restricted in the entangled narrow pores and is not likely responsible for the period shift and long relaxation

    Environment, Ram Pressure, and Shell Formation in HoII

    Get PDF
    Neutral hydrogen VLA D-array observations of the dwarf irregular galaxy HoII, a prototype galaxy for studies of shell formation, are presented. HI is detected to radii over 16' or 4 R_25, and M_HI=6.44x10^8 M_sun. The total HI map has a comet-like appearance suggesting that HoII is affected by ram pressure from an intragroup medium (IGM). A rotation curve corrected for asymmetric drift was derived and an analysis of the mass distribution yields a total mass 6.3x10^9 M_sun, of which about 80% is dark. HoII lies northeast of the M81 group's core, along with Kar52 (M81dwA) and UGC4483. No signs of interaction are observed and it is argued that HoII is part of the NGC2403 subgroup, infalling towards M81. A case is made for ram pressure stripping and an IGM in the M81 group. Stripping of the disk outer parts would require an IGM density n_IGM>=4.0x10^-6 atoms/cm^3 at the location of HoII. This corresponds to 1% of the virial mass of the group uniformly distributed over a volume just enclosing HoII and is consistent with the X-ray properties of small groups. It is argued that existing observations of HoII do not support self-propagating star formation scenarios, whereby the HI holes and shells are created by supernova explosions and stellar winds. Many HI holes are located in low surface density regions of the disk, where no star formation is expected or observed. Ram pressure has the capacity to enlarge preexisting holes and lower their creation energies, helping to bridge the gap between the observed star formation rate and that required to create the holes. (abridged)Comment: 43 pages, including 7 figures. 4 figures available as JPEG only. Complete manuscript including full resolution figures available at http://www.strw.leidenuniv.nl/~bureau/pub_list.html . Accepted for publication in The Astronomical Journa
    corecore